311

———

Figure 6.12

6.5 Relational Database Design

Decomposition of TEACHES relation: (a) COURSE_DETAILS; (b) ROOM-DETAILS;
and (c) Decomposition of COURSE_DETAILS to eliminate transitive dependency.

Course Prof Room Enrol_Lmt Room Room_Cap
353 Smith AS532 40 AS532 45
351 Smith C320 60 C320 100
355 Clark H940 300 H940 400
456 Turner B278 45 B278 50
459 Jamieson D110 45 D110 50

’ @ (b) '
Course Prof Enrol_Lmt Course Room
353 Smith 40 353 AS32
351 Smith 60 351 C320
355 Clark , 300 355 H940
456 Turner 45 456 B278
[459 Jamieson 45 : 459 D110

©

domain of Enrol_Lmt is also an integer value and should be less than or equal to the
corresponding value for Room_Cap.

The TEACHES relation is in first normal form since it contains only atomic
values. However, as mentioned earlier, since the course is scheduled in a given room
and since the room has the given maximum number of available seats, there is a
functional dependency Room — Room_Cap, and hence by transitivity, Course —
Room — Room_Cap. Thus, the functional dependencies in this relation are {Course
—> (Prof, Room, Room_Cap, Enrol_Lmt), Room — Room_Cap}. Also, there is an-
other transitive dependency* Room — Room_Cap — Enrol_Lmt. The presence of

 these transitive dependencies in TEACHES will cause the following problems. The
capacity of a room cannot be entered in the database unless a course is scheduled in

that room; and the capacity of a room in which only one course is scheduled will be
deleted if the only course scheduled in that room is deleted. Because the same room
can appear more than once in the database, there could be in¢onsistencies between
the multiple occurrences of the attribute pair Room and Room_Cap.

Consider the decomposition of the TEACHES relation into the relations COURSE
—DETAILS (Course, Prof, Room, Enrol_Lmt) of Figure 6.12a and ROOM_DETAILS

(Room, Room_Cap) of Figure 6.12b. The set of functional dependencies in COURSE

DETAILS is given by {Course — Prof, Course — Room, Course — Enrol
—Lmt} and the functional dependency in ROOM_DETAILS is {Room — Koom_Size}.
These relations do not have any partial dependencies: each of the attributes is fully

“Here we assume that Enrol_Lmt is the upper limit on registration for a coutse and is based solely on the room capacity.

312

Chapter 6 Relational Database Design

functionally dependent on the key attribute, namely Course and Room, respectively.
Hence, these relations are in second normal forin. However, the relation COURSE_
DETAILS has a transitive dependency since Course — Room — Enrol_Lmt. In
addition there is an interrelation join dependency between the relation COURSE_
DETAILS and ROOM_DETAILS to enforce the constraint that the Enrol_Lmt be
less than or equal to the Room_Cap.

Third Normal Form

A relation scheme.in third normal form does not allow partial or transitive depend-
encies. The decomposition of STDINF into STUDENT_INFO TRANSCRIPT and
TEACHER gives third normal form relations.

A relation scheme R<S, F> is in third normal form (3NF) if for all nontrivial
functional dependencies in F* of the form X — A, either X contains a key (i.e.,
X is a superkey) or A is a prime attribute. A database scheme is in third normal

form if every relation scheme included in the database scheme is in third normal
form. :

In a third normal form relation, every nonprime attribute. is nontransitively and
fully dependent on the every candidate key. A relation scheme R is not in third
normal form if any functional dependency such as X — Y implied by F is in conflict
with the above definition of third normal form. In this case one of the following must

_be true:

® X is a subset of a key of R and in this case X — A is a partial dependency.

® X is not a subset of any key of R and in this case there is a transitive
dependency in F*. Since for a key Z of RZ — X with X not in Z, and X — A
with A not in X, Z — X — A is a nontrivial chain of dependencies

The problems with a relation scheme that is not in 3NF are discussed below.

If a relation scheme R contains a transitive dependency, Z — X — A, we
cannot insert an X value in the relation along with an A value unless we have a Z
value to go along with the X value. This means that we cannot independently record
the fact that for each value of X there is one value of A. This is the insertion anom-
aly. Similarly, the deletion of a Z — X association also requires the deletion of an
X — A association leading to the deletion anomaly. If a relation R contains a partial
dependency, i.c., an attribute A depends on a subset X of the key K of R, then the
association between X and A cannot be expressed unless the remaining parts of K
are present in a tuple. Since K is a key, these parts cannot be null.

The 3NF scheme, like the 2NF scheme, does not allow partial dependencies.
Furthermore, unlike the 2NF scheme, it does not allow any transitive dependencies.

The relation COURSE_DETAILS of Figure 6.12a has a transitive dependency
because Course — Room — Enrol_Lmt. We can eliminate this transitive dependency
by decomposing COURSE_DETAILS into the relations (Course, Prof, Enrol_Lmt)
and (Course, Room). These decomposed relations are shown in Figure 6.12c. Note

* that enforcing the constraint that Enrol_Lmt be less than the Room_Cap now requires

a join of three relations!

6.5 Relational Database Design 313

Normalization through Decomposition (Based on FDs)

We noted above the presence of insertion and deletion anomalies when R contains a
partial or transitive dependency. The insertion of values for Z and X without an A
value may be handled by using a null value, provided the attribute A allows null
values. If null values are not allowed for A, the Z to X association cannot be repre-
sented without a corresponding A value.

In this section we will examine how to start with a relation scheme R and a set
of functional dependencies F such that R is not in third normal form with respect to
the set F, and arrive at a resultant set of relation schemes that are a lossless join 3NF
decomposition of R. The relation scheme R can be decomposed into a number of
relation schemes by projection (the intent of the decomposition being to produce
simpler schemes in 3NF).

Example 6.17 Consider the relation of Figure C, ENROLLMENT(Student_Name, Course,

Phone_No, Department, Grade). In this relation the key is Student_Name,
Course and it has the following dependencies: {Student_Name — Phone_
No, Student_Name —> Department, Student_Name Course — Grade}. Here
the nonprime attribute Phone_No is not fully functionally dependent on the
key but only on part of the key, namely the attribute Student_Name. Simi-
larly, the nonprime attribute Department is fully functionally dependent on
the attribute Student_Name. These are examples of partial dependen-
cies.

Figure C The ENROLLMENT relation. &

Student_Name Course Phone_No Department Gr
Jones 353 237-4539 Comp Sci A
Ng 329 427-7390 Chemistry A
Jones 328 237-4539 Comp Sci B
Martin 456 388-5183 Physics C
Dulles 293 371-6259 Decision Sci B
Duke 491 823-7293 - Mathematics C
Duke 353 823-7293 Mathematics B
Jones 491 237-4539 Comp Sci C
Evan 353 842-1729 Comp Sci A+
Baxter 379 839-0827 English B

The problem with the relation ENROLLMENT is that unless the student takes
at least one course, we cannot enter data for the student. Note that we cannot enter
a null value for the Course portion of a tuple since Course is part of the primary key

316 Chapter 6 Relational Database Design

Figure E Example of a lossy decomposition: (i) The STUDENT_
ADVISOR relation; (i) STUDENT_DEPARTMENT; (ii}) DE-
PARTMENT_ADVISOR; and (iv) Join of STUDENT_DE-
PARTMENT and DEPARTMENT_ADVISOR.

Name Department Advisor Name Department
Jones Comp Sci Smith Jones Comp Sci
Ng ‘Chemistry Tumer Ng Chemistry
Martin Physics Bosky Martin - Physics |
Dulies Decision Sci Hall Dulles Decision Sci
Duke Mathematics James Duke Mathematics
James Comp Sci Clark James Comp Sci
Evan Comp Sci Smith Evan Comp Sci
Baxter English Bronte Baxter English
@) (ii)
Department Advisor Name Department Advisor
Comp Sci Smith Jones Comp Sci Smith
Chemistry Tumer Jones Comp Sci Clark
Physics Bosky Ng Chemistry Tumer
Decision Sci Hall Martin " Physics Bosky
Mathematics James Dulles Decision Sci Hall
Comp Sci Clark Duke Mathematics James
English Bronte James Comp Sci Smith
James Comp Sci Clark
(iii) Evan Comp Sci Smith
Evan Comp Sci Clark
Baxter English Bronte
(iv)
ADVISOR into STUDENT_DEPARTMENT(Name, Department) _and
~ DEPARTMENT._.ADVISOR (Department, Advisor) is given in Figures Eii
and Eiii. The join of these decomposed relations is given in Figure Eiv and
contains tuples that did not exist in the original relation of part i. The de-
composition is called lossy. B

6.5 Relational Database Design 317

The terms lossless and dependency preserving are defined below.

Definition: A decomposition of a relation scheme R <S, F> into the relation schemes R, X \

(1 =i < n) is said to be a lossless join decomposition or simply lossless if fo\\",

 every relation R(R) that satisfies the FDs in F, the natural join of the projections
of R gives the original relation R; i.e., .

R = mgy(R) D ma(R) D .. . D<I mpa(R)

If R C mpa(R) D<! wge(R) D . . . D<I mga(R) then the decomposition is - :
called lossy.’ . , ‘

The lossless join decomposition enables any relation to be recovered from its
projections or decompositions by a series of natural joins. Such decomposed relations
contain the same data as the original relation. Another property that the decomposi-
tion of a relation into smaller relations must preserve is that the set of functional
dependencies of the original relation must be implied by the dependencies in the
decompositions.

TR TR B i B

Definition: ~ Given a relation scheme R<S, F> whe
F] Ry Ray s+« Ry with the functions
" decomposition of R is dependency-prese
F,UF,U. . .UF.) is the identical to

F* e

If we decompose a relation into relation schemes that do not preserve depend-
encies, the enforcement of the original FDs can only be accomplished by joining the
decomposed relation. This operation has to be done for each update for verifying
consistency. Note that the dependencies in the decomposition are always implied by
the original set of FDs.

These observations are summarized in the following theorem; we will not give
a formal proof of this theorem but illustrate it with examples. Formal proofs can be
found in the references given in the bibliographic notes at the end of the chapter.

Theorem 6.1: A decomposition of relation scheme R <(X, Y, Z), F> into R;<(X,),
F,> and R,<(X, Z), F; R; < (X,Z), F; > is:

(a) dependency preserving if every functional dependency in R can be logically derived
from the functional dependencies of R, and Ry, i.e., (F, U F%)* = F*, and

(b) is lossless if the common attributes X of R, and R, form a superkey of at least one
of these, i.e., X—> YorX— Z.

SR C maa(R) D<V mga(R) D . . . D] ma(R) is always true.

318 Chapter 6 Relational Database Design

Example 6.19 illustrated a decomposition that is both lossy and doesn’t preserve
the dependencies in the original relation. It is lossy because the common attribute
Department is not a key of either of the resulting relations and consequently, the join
of these projected relations produces tuples that are not in the original relation. The
decomposition is not dependency-preserving because the FD Name — Advisor is not
implied by the FDs of the decomposed relation.

Example 6.20 illustrates a lossless decomposition.

Example 6.20 Let R(A, B, C) and F = {A — B}. Then the decomposition of R into Ry(A,
B) and R,(A, C) is lossless because the FD {A — B} is contained in R, and

the common attribute A is a key of R;. W

A decomposition which is lossy is given below.

Example 6.21 Let R(4, B, C) and F = {A — B}. Then the decomposition of R into R,(A,
B) and Ry(B, C) is not lossless because the common attribute B does not

functionally determine either A or C, i.e. it is not a key of R. orR, B

A decomposition which is both lossless and dependence preserving is given in
Example 6.22.

Example 6.22 Given R(A, B, C, D) with the functional dependencies F = {A - B, A —
C, C — D}, consider the decomposition of R into Ry (A, B, C) with the
function dependencies F; = {A — B, A — C} and R,(C, D) with the func-
tional dependencies F, = {C — D}. In this decomposition all the original
FDs can be logically derived from F, and F,, hence the decomposition is
dependency-preserving. Also, the common, attribute C forms a key of R,.
The decomposition of R into R, and R, is lossless. W

Example 6.23 gives a lossy decomnosition which also is not dependency pre-
serving. .

Example 6.23 Given R(A,B,C,D) with the functional dependencies F = {A > B, A— C,
A — D}, the decomposition of R into Ry(A4,B,D) with the functional de-
pendencies F; = {A — B, A — D} and Ry(B,C) with the functional de-
pendencies F, = {} is lossy because the common attribute B is not a candi-
date key of either R, or R,. In addition, the FD A — C is not implied by
any FDs in R, or R,. Thus, the decomposition is not dependency-preserv-
ing. W

6.5 Relational Database Design 319

Now let us consider an example involving the decomposition of relations from

the familiar university-related database. This decomposition, while lossless, is not
dependency-preserving.

Example 6.24

Consider the relation scheme CONCENTRATION {Studen:(S), Major_or-_.
Minor(M,,), Field_of Study(F), Advisor(A)} with the functional dependen-
cies F = {(S, M,,, F,) = A, A — F,}. Figure Fi illustrates some instances
of tuples of a relations on this relation scheme. This relation can be decom-
posed by projection into the relation schemes SMLA(S, M,,, A) and FA(F,,
A).-The decomposition of the relation of part i iito these two relations is
shown in parts ii and iii. This decomposition is lossless because the common
attribute A determines F,. However, the decomposition does not preserve
the dependencies; the only nontrivial dependency in the decomposition is A
—> F,, but it does not imply the dependency (S, M,,, F,) — A. This is an
example of a decomposition that is lossless but not dependency-preserving.

Figure F

Example of a lossless that is not depen-
dency preserving: (i) The CONCENTRATION relation; (ii)
The SM,,A relation; and (jii) The F,A relation. .
Student Major_or_Minor Field_of-_Study Advisor
Jones Major Comp Sci Smith
Jones Minor Mathematics Jamieson
Ng Major Chemistry Turner
Ng Minor Comp Sci Clark
Ng Minor Physics Bosky
Martin Major Physics Bosky
Martin Minor Chemistry Tumner
James Major Physics Newton
James Minor Comp Sci Clark
@)
Student M, Advisor Field_of_Study Advisor
Jones Major Smith Comp Sci Smith
Jones Minor Jamieson Mathematics ‘| Jamieson
Ng Major Tumer Chemistry Turner
Ng Minor Clark Comp Sci Clark
Ng Minor Bosky Physics Bosky
Martin Major Bosky Physics Newton
Martin Minor Turner (iii)
James Major Newton
James Minor Clark

(i)

322 Chapter 6 Relational Database Design

A B C D E
R, a, ag Qac Bip Bie
R; B2 Qg Qc Qap 32
R, Baa B3s Qac Qp Qg

A B C D E
R, LY Qg Qe ap Bie
R, Baa Qg Qc Qp B2
R, Bsa Bss Qc Qap Qg

any changes to the table. When we consider the FD C — D, we find that
all rows of the column C, the determinant of the FD, are identical and this
allows us to change the entries in the column D to ap. No further changes
are possible and the final version of the table is the same as the table on the
right. Finally we find no rows in the table with all as and conclude that the
decomposition is lossy. B

As we discussed earlier, a decomposition is dependency-preserving if the clo-
~sure of F’ (where F' = F; UF, U . . . UF,) is identical to F*. However, the
task of computing the closure is time consuming and we would like to avoid it. With
this in mind, we provide below an alternate method of checking for the preservation
of the dependencies. This method takes each functional dependency X — Y in F and
computes the closure X'* of X with respect to F’. If Y C X'*, then F’ EX->Y.
If we can show that all functional dependencies in F are logically implied by F’, we
can conclude that the decomposition is dependency-preserving. Obviously, if even a
single dependency in F is not covered by F’, the decomposition is not dependency-
preserving. Algorithm 6.5 checks if a decomposition is dependency-preserving.
If the union of dependencies of the decomposed relations is the same as the
original set of dependencies, then the decomposition is dependency-preserving. This
is illustrated in the following example.

Example 6.27 Consider R(A,B,C,D) with the functional dependencies F {A — B, A — C,
C — D} and its decomposition into R,(A,B,C) with the functional depend-
encies F; = {A — B, A — C} and Ry(C,D) with the functional dependencies
F, = {C — D}. This decomposition is dependency-preserving because all
the original FDs can be logically derived from F, and F,. (In this case each
FD in F is included in F' (where ' = F, UF>).) B

The following example illustrates a decomposition which is not dependency-
preserving. -

6.5 Relational Database Design 323

[r———————] 1
Algorithm - pjgorithm to Check if a Decomposition
6.5 is Dependency Preserving
Input: A relation scheme and a set Fof functional dependencies; a projection (Ry,
Ry, . . «» Ry) of R with the functional dependencies (Fy, F3, . . ., Fo).
Output: Whether the decomposition is dependency-preserving or not.

F'*_=_F* := wrue; (*Assume F'*_=_F"*, used as a variable, is true *)

F = & :

fori:= 1tondo
FF:=FU Fi;

for each FD X — Y € F and while F*_=_F")do

‘ (* compute X'*, the closure of X under F’, using Algorithm 6.1))
ifY C X' then F'*_=_F* = false; (* i.e., the decomposition is not
dependency-preserving *);

e

Example 6.28 R(A,B,C,D) with the functional dependencies F{A — B, A = C, A — D}

is decomposed into Ry(A,B,D) with the functional dependencies F; = {A
— B, A — D} and Ry(B,C) with the functional dependencies F; = {}. This
is not dependency-preserving because the FD A — C is not implied by any
FDs in RyorR,. B

Now let us consider the decomposition of a relation trom the university data-
base.

£xample 6.29 Consider the relation STUDENT_ADVISOR(Name, Department, Adyvisor)

of Figure Ei with the functional dependencies F = {Name —> Department,
Name — Advisor, Advisor — Department}. Here, the decomposition of
STUDENT_ADVISOR into STUDENT_PROFESSOR(Name, Advisor) with
the functional dependency {Name — Advisor}, and DEPARTMENT_AD-
VISOR(Department, Advisor) with the functional dependency {Advisor —
Department is dependency-preserving, because the dependency Name —
Department is implied by (Name — Advisor) U (Advisor —> Department);
in addition, the decomposition is lossless. W

On the other hand, the following decomposition is not dependency-preserving.

Example 6.30 The decomposition of the relation CONCENTRATION of Figure F into the

relations SM,A and F,A is not dependency-preserving because FF=A—>
F, and the FD SM,,F; — A is not implied by F'. &

326 Chapter 6 Relational Database Design

canonical cover; this caters to any possible many-to-many association between these
attributes,

A}

Algorithm for Lossless and Dependency—Preserving
Third Normal Form Decomposition

For this algorithm we assume that we have a canonical cover F, for the set of FDs
F for the relation scheme R and that K is a candidate key of R. Algorithm 6.6
produces a decomposition of R into a collection of relation schemes R, Ry, .. .,
R,. Each reiation scheme R; is in third normal form with respect to the projection of
F. onto the scheme of R

In Example 6.31 below, we give a decomposition into 3NF relation schemes
which is both lossless and also dependency-preserving.

Example 6.31 Find a lossless join and dependency-preserving decomposition of the follow-
ing relation scheme with the given set of functional dependencies:

SHIPPING (Ship, Capacity, Date, Cargo, Value)
Ship — Capacity,

ShipDate — Cargo,

CargoCapacity — Valye

First find the canonical cover of the given set of FDs. The FDs are simple
since each has a single attribute on the right-hand side. There are no redun-
dant FDs in the set and none of the FDs contains extraneous attributes on
the left-hand side. Hence the given set of FDs is in canonical form. A can-
didate key of the relation is ShipDate. '

Now use Algorithm 6.6 to find a lussless and dependency-preserving
decomposition of SHIPPING. Since all attributes appear in the canonical
cover we need not form a relation for attributes not appearing in any FD.
There is no single FD in the canonical cover that contains all remaining
attributes in SHIPPING, so we proceed to form a relation for each FD in
the canonical cover.

R(Ship, Capacity) with the FD Ship — Capacity
Ry(Ship, Date, Cargo)-with the FD ShipDate — Cargo
Ry(Cargo, Capacity, Value) with the FD CargoCapacity — Value

As a candidate key is included in the determinant of the FD of the decom-
posed relation scheme R;, we need not include another relation scheme with
only a candidate key. The decomposition of SHIPPING into R;, R;, and
R; is both lossless and depcndency-preserving. []

In Example 6.32 we find a 3NF decomnosition of a relation from the university

6.5 Relational Database Design 327

Example 6.32

Consider the relation scheme STUDENT_INFO(Student(S), Major(M), Stu-
dent_Department(Sy), Advisor(A), Course(C), Course_Department(C,),
Grade(G), Professor(P), Prof_Department(P;), Room(R), Day(D), Time(T))
with the following functional dependencies:

S— M each student is in an unique major

S—A each student has an unique advisor

M — S, each major is offered in an unique department

§— S, each student is in one department

A— Sy eac]{ advisor is in an unique department

C— C, each course is offered by a single department

C— P each course is taught by one professor

P — P, each professor is in an unique department

RTD — C each room has on a given day and time only one course sched-
uled in it

‘RTD — P each room has on a given day and time one professor teaching

it it

TPD — R a given protessor on a given day and time is in one room

TSD — R a given student on a given day and time is in one room

TDC — R a course can be in only one room on a given day and time

TPD — C on a given day and time a professor can be teaching only one
course

TSD — C on a given day and time a student can be attending only one
course '

SC — G each student in a given course has a unique grade

A canonical cover of this set of functional dependencies will not contain the
dependencies {S — S4, RTD — P,TDC — R, TPD — C, TSD — R}. The
key of this relation scheme is TSD. The decomposition of this relation
scheme into third normal form gives the following relation schemes:

R{(SMA) with the FD § — MA
RyMS,) withthe FDM — S,
Rs(AS,) withthe FDA— S,
R(CCP) with the FD C — C,P
Rg(PP;) withthe FDP— P,
R¢(RTDC) with the FD RTD — C
R4(TPDR) with the FD TPD — R
Rg(TSDR) with the FD 7SD — R
Ry«(SCG) with the FD SC — G

(Note: Since all the attributes in the original relation scheme are involved
with some FD we do not have to create a relation scheme with attributes not
so involved. Also, the relation scheme Rg includes a candidate key; conse-
quently we don’t need to create an explicit relation scheme for the key.)
R, through R, form a lossless and dependency-preserving decomposition of
STUDENT_INFO B

Derivaiion ot other canonicai covers of this set of FDs and the corresponding

relational schemes in 3NF is left as an exercise.

Chapter 6 Relational Database Design

Algorithm) o o eloss Boyce Codd Normal Form
6.7 Decomposition Algorithm el
Input: A relation scheme R<U, F3> not in BCNF where F is a set of FD.
Outpws: Decomposition of R(L]) inte relatic 0 schemes RqU), | =< i < n such that
each R(U) is in BCNF and the Bposition is lossless.
begin
ii=0y
: S:ai.,L_ g
Find'F’ from F; (* here F' s a n it cover of F #)
while (- all BONF)do =~ o
. §f there exists a gontrivial FD (X —» Y) in F'* such that
XY C R, an#X - R, (* R, a relation scheme in S, is not in BCNF,
i /1 . . i‘c., x - R’ iS not in F'+ *)
begin .
ir=i+1 ,
. form relation R{X, Y} with the FD X — Y and add
~itto§ -
lg o= lﬁ - Y%
end;
else all BCNF := true;
end; o
ﬁ»

Example 6.35 Find a BCNF decomposition of the relation scheme SHIPPING with the

may be lost. Also, the relation schemes so
set of decomposed schemes depends on the
cies in the original relation is used.

We use Algorithm 6.7 to find BCNF decomposition of a number of relations in
Examples 6.35 through 6.37.

following set of functional dependencies:

SHIPPING(Ship, Capacity, Date, Cargo, Value)
Ship — Capacity

ShipDate — Cargo

CargoCapacity — Vaiue

cover.

produced are not unique. The resulting
order in which the functional dependen-

First find the nomedundant cover of the given set of FDs. There are no
redundant FDs in the set, hence the given set of FDs is a nonredundant

6.5 Relational Database Design 331

Now use Algorithm 6.7 to find a lossless decomposition of SHIP-
PING. Since there is an FD Ship — Capacity and since Ship =+ SHIPPING
we replace SHIPPING with the relation R, (Ship, Capacity) formed with
the FD in question and R(Ship, Date, Cargo, Value). Consider the relation
R,: the FD ShipDate — Cargo is a nontrivial FD in the nonredundant cover.
However, since ShipDate — ShipDateCargoValue, the relation R, is in
BCNF and we have completed the decomposition.

R,(Ship, Capacity) with the FD Ship — Capacity ; ;
R,(Ship, Date, Cargo, Value) with the FD ShipDate — Cargo :

The decomposition of SHIPPING into R, and R; is lossless but not depen-
dency preserving because the FD CargoCapacity — Value is not implied by
the set of FDs {Ship — Capacity, ShipDate — Cargo}.

Another BCNF decomposition of SHIPPING is obtained when we con-
sider the FD CargoCapacity — Value first. This gives us the following
decompositions:

R,(Cargo, Capacity, Value) with the FD CargoCapacity —> Value
R,(Ship, Capacity) with the FD Ship — Capacity
Ry(Ship, Date, Cargo) with the FD ShipDate — Cargo

This decomposition is also dependency-preserving. B

An example of a BCNF decomposition which is not dependency preserving
given below.

Example 6.36 Consider the relation scheme <(ABCD), {AB — C, C — A}>. None of the
FDs are redundant, so the given set is a nonredundant cover. Using the FD
AB — C we decompose this into the relation schemes: <(ABC), {AB — C,
C — A}> and <(ABD), { }>. The scheme <(ABC), {AB— C, C— A}>
can be further decomposed into the schemes <(AC), {C — A}> and <(BC),
{ }»>. n

In Example 6.37, we demonstrate the non-uniqueness of the BCNF decomposi-
tion.

Examplie 6.37 Consider the relation scheme STUDENT_INFO{S, M. S4, A, C,CsG, P,
P4, R, D, T} with the following functional dependencies (S — MA, M-

S4, A— S84, C— CP, P— Py RDT — C, TPD — R, TSD — R, SC —

G). The key of this relation is TSD. The decomposition of this relation into

a number of BCNF relation schemes using Algorithm 6.7 gives the decom-

position tree shown in Figure G. The left tree is obtained by considering the

FDs in the order S — MA, S > S5, C—> C4, C— P, and RDT — C. This

order gives the following set of BCNF relation schemes: (SMA), (SSa),

(CC.), (CP), (RDTC), and (SGPRDT). The right decomposition is obtained

by considering the FD SC — G first.

Chapter 6 Relational Database Design

;

Figure G Two Difterent Decomposition Trees.
(SMS4ACC4GPP4RDT) (SMS4ACC 4GPP4RDT)
S > MA SC»G
(SMA), (SS4CC4GPP4RDT) (SCG), (SMSZACCq4PP4RDT)
S >S54 I TSD - R l
(SS4). (SCC4GPP4RDT) (TSDR), (SMS4ACC4PP4DT)
C »Cy P> Py
(CCq), (SCGPP4RDT) (PPg). (SMS4ACC4PDT)
’ELJ_' c>r
(CP), (SCGP4RDT) (CP), . (SMS4ACC4DT)
RDT = C I ' c>cy
! | I |
(RDTC), {SGP4RDT) (CCq), (SMS4ACDT)
RDT =Py I A >S5y
(RDTPg), (SGRDT) (ASq), (SMACDT)
|
S>A |
(SA), (SMCDT)
S»M ‘
(SM), (SCDT)
]

We sec from the above example that for different orders of considering the FDs,
we get different decomposition trees and hence different sets of resulting relation
schemes. For Example 6.37, we illustrate in Figure G two different decomposition
trees giving the following sets of relations: {(SMA), (SS,), (CC,), (CP), (RDTC),
(P4RDT), (SGRDT)} and {(SCG), (TSDR), (PPy), (CP), (CCa), (ASd), (SA), (SM),
(SCDT)}.

One other point we notice is that some of the wtiginal dependencies are no
longer preserved iin the decompositions given above. For instance, in both sets of
relation schemes, the FD M — S, is no longer represented. This means that we
cannot ascertain, without one or more joins, that the corresponding fact is correctly
represented in the database. At each step of the algorithm we are decomposing a
relation into two relations, such that the common attribute is a key of one of these
relations. Consequently, the decomposition algorithm produces a set of lossless
BCNEF relations.

B

6.6 Concluding Remarks 333

We conclude with the observation that there are relation schemes R<S, F>
such that no decomposition of R under F is dependency-preserving. This is a worse
situation than one where some decompositions are dependency-preserving while oth-
ers are not. .

Concluding Remarks

Let us return to the relation STUDENT_ADVISOR(Name, Depariment, Advisor) of
Figure Ei with the functional dependencies F = {Name — Department, Name —
Advisor, Advisor — Department}. When we decomposed STUDENT_ADVISOR
into STUDENTfDEPARTMENT(Name, Department), and DEPARTMENT_ADVI-
SOR (Department, Advisor), giving the relations shown in Figures Eii and Eiii, we
found that the decomposition was lossy. The common attribute, Department, is not
a key of either of the decomposed relations. The join of these decomposed relations,
given in Figure Eiv, contains tuples that did not exist in the original relation of Figure
Ei. In addition the decomposition is not dependency-preserving. The FD Name —
Advisor is not implied by the FDs of the decomposed relation nor could it be derived
from their join.

We notice, however, that there are three independent relationships in the
STUDENT_ADVISOR relation, and the only key is NameAdvisor. We can decom-
pose it into three relations, ADVISOR_STUDENT(Name, Advisor), STUDENT_DE-
PARTMENT(Name, Department), and ADVISOR_DEPARTMENT(Advisor, De-
partment). This decomposition is useful in storing the independent relationships
autonomously. The original relation can be obtained by joining these decomposed
relations. The decomposition is lossless since the common attribute in these relations
is a key of one of them. Furthermore, the decomposition is dependency preserving
since each of the FDs is preserved in one of the relations.

Note that some of these independent relationships that are not involved with
each other will be eliminated from the final result. For instance, a new student,
Letitia, may join the Physics department without having an advisor. Similarly, a new
professor, Jaffe, may join the Chemistry department and may not yet be advising
students. The resulting relations are shown in parts a, b, and ¢ of Figure 6.16. In the
original relation, this data could only have been entered with null values for the |
unknown attribute. :

The join of thesc reiations to obtain the STUDENT_ADVISOR relation gives
us the tuples shown in Figure E. The new tuples added in the decomposed relation
participate in one of the joins, as shown in Figure Ed. However, these and other
extraneous tuples are eliminated when the second join is performed. The tuples (Le-
titia, Physics) of STUDENT_DEPARTMENT and (Jaffe, Chemistry) of ADVISOR_
DEPARTMENT are eliminated for this sequence of joins. Such tuples, which do not
contribute to the result of the join operations, are called dangling tuples. -

When we refer to the attributes Name, Advisor, and Department in a database
containing the above three relations, we need to distinguish the various applications
of the same symbol. A simple method of doing this is by preceding the attribute with
the name of the relation. Another approach would be to use unique identifiers for
each role that the attribute plays in the model.

334 Chapter 6 Relational Database Design

Figure 6.16 Join of the decomposition of STUDENT_ADVISOR: (a) ADVISOR_STUDENT:
(b) STUDENT_DEPARTMENT; (c) ADVISOR_DEPARTMENT; and (d) X = STUDENT
DEPARTMENT D<I ADVISOR_DEPARTMENT. Note: The marked tuples are elimi-
nated when this result relation, X, is joined with ADVISOR_STUDENT, i.e., STUDENT

ADVISOR = ADVISOR_STUDENT >
Name,Advisor.
Name Advisor Name Department Advisor Depamngm
Jones Smith Jones Comp Si Smith Comp Sci
Ng Tumer Ng Chemistry Tumer Chemistry
Martin Bosky Martin Physics Bosky Physics
Dulles Hall Dulles Decision Sci Hall Decision Sci
Duke James Duke Mathematics James Mathematics
James Clark James Comp Sci Clark Comp Sci
 Evan Smith Evan Comp Sci Bronte English
* Baxter Bronte Letitia Physics Jaffe Chemistry
@ Baxter English ©

)

Name Department Advisor
Jones Comp Sci Smith
Jones - Comp Sci Clark <
Ng Chemistry Turner
Ng Chemistry Jaffe <
Martin Physics Bosky
Dulles Decision Sci Kall
Duke Mathematics James
James Comp Sci Smith <
James Comp Sci Clark
Evan | Comp Sci Smith
Evan Comp Sci | Clark <
Letitia Physics Brosky <
Baxter English Bronte

)

The goal of database design is to ensure that the data is represented in such a
way that there is no redundancy and no extraneous data is generated. This means
that we would generate relations in as high an order as possible. Since we cannot
always guarantee that the BCNF relations will be dependency preserving when both
lossless and dependency-preserving relations are required, we have to settle for the
third normal form.

6.7 Summary - 338

6.7

Summary

In this chapter we studied the issues involved in the design of a database application
using the relational model. We discussed the importance of having a cdnsnstent da-
tabase without repetition of data and pointed out the anomalies that could be intro-
duced in a database with an undesirable design. The criteria to be addressed by the
design process are redundancy, insertion anomalies, deletion anomalies, and update
anomalies.

A relation scheme R is a method of indicating the attrlbute names involved in a
relation. In addition the relation scheme R has a number of constraints that have to
be satisfied to reflect the real world being modeled by the relation. These constraints
are in the form of FDs. The approach we have used is to replace R by a set of more
desirable relation schemes. In this chapter we considered the decomposition ap-
proach. The synthesis approach is discussed in Chapter 7.

The decomposition approach starts with one relation (the universal relation) and
the associated set of constraints in the form of functional dependencies. The relation
has a certain number of undesirable properties (in the form of insertion, deletion, or
update anomalies) and it is replaced by its projections. A number of desirable forms
of projections have been identified. In this chapter we discussed the following normal
forms: 1NF, 2NF, 3NF, BCNF.

Any relation having constraints in the form of FDs onty can be decomposed into
relations in the third normal form; such a decomposition is lossless and preserves the
dependencies. Any relation can also be decomposed losslessly into relations in the
Boyce Codd normal form (and hence into the third normal form). However, such
decomposition intc the Boyce Codd normal form may not be dependency-preserving.
The goal of the decomposition approach to the relational database design using FDs
is to come up with a database scheme that is in BCNF, is lossless, and preserves the
original set of FDs. If this goal is not possible, an alternate goal is to derive a
database scheme that is in 3NF and is lossless and dependency-preserving.

decomposition

universal relation

universal relation assumption
spurious tuple

triviul functional dependency
closure

cover

nonredundant cover

simple

. canonical cover

minimal k

full functional dependency
prime attribute

nonprime attribute

partial dependency
transitive dependency
synthesis

content preserving
dependency-preserving
interrelation join constraints
unnormalized

nonatomic value

normalized

first normal form (1NF)
second normal form (2NF)
third normal form (3NF)
lossless join decomposition
lossless

lossy

Boyce Codd normal form
(BCNF)

dangling tuple

336 Chapter 6 Relational Database Design

Exercises

6.1 Given R{ABCDE} and F = {A — B, BC — D, D — BC, DE — ¢}. are there any redundant
FDs in F? If so, remove them and decompose the relation R into 3NF relations.

6.2 Given R{ABCDE} and the set of FDs on R given by F = {AB — CD, ABC — E, C — A},
what is X*, where X = {ABC}? What are the candidate keys of R? In what normal
form is R?

8.3 Given R{ABCDEF} and the set of FDs on R given by F = {ABC — DE, AB — D, DE —
ABCF, E — C}, in what normal form is R? If it is not in 3NF, decompose R and find a set
of 3NF projections of R. Is this set lossless and dependency-preserving?

6.4 Given the relation scheme R{Truck(T), Capacity (C), Date (Y), Cargo(G), Destination (D),
Value(V)} with the following FDs {T — C, TY — G, TY — D, CG — V}, is the
decomposition of R into RH{TCD} and R2{TGDVY} dependency-preserving? Justify. Is this
decomposition lossless? Justify. Find a lossless join and dependency-preserving
decomposition of R into 3NF. If the 3NF decomposition is 1ot in BCNF, find a BCNF
decomposition of R.

6.5 Consider a relation scheme R with the following set of attributes and FDs: {SID, Name,
Date_of Birth, Advisor, Department, Term, Year, Course, Grade}, {SID — NameDate_of..
BirthAdvisorDepartment, Advisor — Department. SIDTermYearCourse — Grade}. Find the
candidate keys of R. Does a dependency-preserving and lossless join decomposition of R
into a number of BCNF schemes exist? If so, find one such decomposition. Suppose R is
decomposed into the relation schemes {SID, Name, Date_of_Birth}, {SID, Advisor,
Department}, and {SID, Term, Year, Course. Grade}. Does this decomposition exhibit any
redundancies or anomalies? :

6.8 Prove that every set of functional dependencies F is covered by a set of simple functional
dependencies G, wherein each functional dependency has no more than one attribute on the
right-hand side.

6.7 Given the set of functional dependencies {A — BCD, CD — E, E — CD, D — AH, ABH —
BD, DH — BC}, find a nonredundant cover. Is this the only nonredundant cover?

6.8 Given R{ABCDEFGH]} with the FDs {A — BCDEFGH, BCD — AEFGH, BCE —
ADEFGH, CE — H, CD — H}, find a BCNF decomposition of R. Is it dependency-
preserving?

6.9 GivenR<{A,B.C,D.E, F, G H, 1 J K}, {I > K. Al > BFG, IC — ADE, BIG — CJ,
K — HA}, find a canonica! cover of this set of FDs. Find a dependency-preserving and
lossless join 3NF decomposition of R. Is there a BCNF decomposition of R that is both
dependency-preserving and also lossless? If so, find one such decomposition.

6.10 Given the relation R {ABCDE} with the FDs {A — BCDE, B — ACDE, C — ABDE}, give
the lossless decomposition of R.

8.11 Give an efficient algorithm to compute the closure of X under a set of FDs, using the scheme
outlined in the text.

6.12 Does another canonical cover of the set of FDs of Example 6.32 exist? If so, derive it and
show the corresponding relation schemes.

8.13 Given the relation R {ABCDEF}-with the set H = {A — CE, B— D, C — ADE, BD — F},
find the closure of BCD.

67 Summary . 337

6.14
6.15

6.16

6.17

6.18

6.19

6.21

6.22

Explain why there is renewed interest in unnormalized relations (called the non_[NF or
NFNF). What are its advantages compared to normalized relations?

Discuss the advantages and disadvantages of representing hierarchical structured data from
the real world as an unnormalized relation.

The Sky-High-Returns Mutual Fund (SMF) Corp. offers a number ot different no-load
mutual funds (F) for investment. It sells directly to the public}t.l'lrough a number of branche:.
(B). Each customer (C) is assigned to an agent (A) who is an employee of SMF and works
out of only one branch. Any customer is allowed to buy any number of units (U) of any of
the funds. Each fund is managed out of one of the branches and the portfolio (P) of the fund
is directed by a board of managers (M). The board is made up of agents of SMF; however,
agents from different branches may be involved in any number of boards at any branch. The
unit value of each fund is decided at the end of the last business day of the month and all
purchases and redemptions are done only after the unit price is détermined at that time. The
funds are charged a 5% per year management fee; the agents get 1% of this fee in addition to
their regular salaries. Determine the entities and their attributes that have to be maintained if
SMF is to design a database system to support its operations. What are the dependencies that
have to be enforced? Make any additional assumptions that you may require.

Consider the TEACHES relation. Assume that Room_Cap > Enirol_Lms. This means that
two different courses allocated to the same room at different day and time could have
different Enrol_Lmts. In what normal form is TEACHES under this modified assumption? If
it is not in 3NF form, find a lossless and dependency-preserving decomposition.

Consider the relation scheme R(ABCDE) and the FDs {A— B, C - D, A— E}. Is the
decomposition of R into (ABC), (BCD), (CDE) lossless?

Find a 3NF decomposition of the following relation scheme: (Faculty, Dean, Department,
Chairperson, Professor, Rank, Student). The relation satisfies the following functional
dependencies (and any others that are logically implied by these):

Faculty — Dean

Dean — Faculty

Department — Chairperson

Professor —> RankChairperson

D nt — Faculty

Stident — DepartmentFacultyDean

ProfessorRank — DepartmentFaculty

What are the design goals of a good relational database design? Is it always possible to
achieve these goals? If some of these goals are not achievable, what alternate goals should
you aim for and why?

Use Algorithm 6.4 to determine if the decomposition of STUDENT_ADVISOR(Name,
Department, Advisor) with the functional dependencies F{Name — Department, Name —
Advisor, Advisor —> Department} into ADVISOR_STUDENT(Name, Advisor), STUDENT_
DEPARTMENT (Name, Department), and ADVISOR_DEPARTMENT(Advisor,
Department) is lossless.

Consider the relation scheme R(A, B). With no information about the FDs involved, can you
determine its normal form? Justify your answer.

Consider the relation scheme R(A, B, C, D) where A is a candidate key. With no
information about the FDs involved, ean you determine its normal form? Justify your
answer.

Synthesis
Approach
and Higher
Order Normal

Form

Contents

7.1
7.2

7-3

7.‘

7.5

Probiems in the Decomposition Approach

Normalization through Synthesis
7.21 Functional Dependencies and Semantics
722 Semantics of Nonfunctional Relationships
7.23 Synthesis Approach

7.24 Synthesis Algorithm

Multivalued Dependency
7.3.1 MVD and Normalization
Property of the MVD

7.32 Axioms for Functional and Multivalued
7.3.3 Closure under MVDs
The Dependency Basis
7.3.4 Fourth Normal Form
7.3.5 Lossless Join Decomposition into Fourth Normal Form
7.3.6 Enforceability of Dependencies in Fourth Normal Form

Normalization Using Join Dependency: Fifth
Normal Form

7.41 Join Dependencies
7.42 Project-Join Normal Form

Domain Key Normal Form

7.1 Problems in the Decomposition Approach 341

7.1

LI

The first, second, third, and Boyce Codd normal forms and algorithms for converting
a relation in first normal form into higher order normal forms were discussed in
Chapter 6. In this chapter we continue our discussions of the issues involved in the
design of a database application using the relational model. In Section 7.1, we ex-
amine the problems in the decomposition approach and present the synthesis ap-
proach to database design in Section 7.2. We then turn our attention to the higher
order normal forms, examining the concept of multivalued dependency and axioms
that involve both functional dependencies and multivalued dependencies. We discuss
fourth normal form and a lossless decomposition algorithm for it. Next we introduce
the concept of join dependency and a normal form for it. Finally, we introduce a
scheme whereby all general constraints can be enforced via domain and key con-
straints and the associated normal form, called domain key normal form.

Problems in the Decomposition Approach

Any relation can be decomposed into a number of relations that are in third normal
form. Such a decomposition is lossless and preserves the dependencies. Any relation
can also be decomposed losslessly into relations in Boyce Codd normal form (and
hence in third normal form). However, dec >mposition into Boyce Codd normal form
may not be dependency preserving. A case was illustrated in Example 6.37 in Chap-
ter 6, where among others, the FD M — S4 is no xwger represented in any of the
decomposed relation schemes. It is not always possible *> find a BCNF decomposi-
tion that is both lossless and dependency preserving. In addition, the decomposition
into BCNF is not unique. Many different BCNF relation schemes exist, as illustrated
in Example 6.37.

The decomposition approach using the BCNF decomposition algorithm may pro-
duce interrelational join constraints. This happens when the attributes XY corre-
sponding to one of the functional dependencies X — Y do not appear in any of the
decomposed relation schemes. In the decomposed relation schemes of Example 6.37,
to determine if the FD M — S, is satisfied, we have to join the relations (SMA),
(8Sd) for the left decomposition of Figure G in Example 6.37. In general, to find out
if a functional dependency X — Y is maintained in the decomposed schemes requires
joining several of the decomposed relations. Since join operations are computation-
ally expensive, interrelational join constraints are undesirable.

However, a lossless and dependency preserving decomposition of a relation
scheme into third normal form does not always give the minimum number of relation
schemes. Furthermore, many different possible decompositions with the lossless and
dependency preserving properties may be possible.

The goal of the decomposition approach to relational database design using FDs
is tc come up with a database scheme that is in BCNF, is lossless, and preserves the
original set of FDs. If this goal is not achieved the alternate goal is to derive a
database scheme that is in 3NF and is lossless and dependency preserving.

Chapter 7 Synthesis Approach and Higher Order Normal Form

Ry(ABC) with key A
Ry(CDE) with key CD
Ry«EC) with key E

Ry(DAEH) with key D
Ry(ABDH) with key ABH
R¢(DHBC) with key BC

However, F contains redundant FDs CD — E and DH — BC. This means
that the relations R, and R, are redundant and can be eliminated from the
" design. B

If the FDs used in the synthésis approach are left reduced, i.c., there are no
extrancous attributes on the left-hand side of the FDs, then we will not introduce any
partial dependencies in the relations synthesized using such FDs.

Example 7.2

Consider U{A,B,C,D} with the set of FDs F = {ABC — D, A — C}. The
approach of using each FD in F to synthesize a relation gives the following
relations:

R,(ABCD) with key ABC
Ry(AC) with key A.

However, the relation R, is not in 3NF since there is a partial depen-
dency AB — D. If the FD A — C were used to left reduce ABC — D, we
replace the latter by AB — D and hence obtain a synthesized design in the
3NF. =

If two or more FDs have determinants that are functionally dependent on each
other they are said to be equivalent. For instance, if we have set of attributes X and
YandifX-—»YandY—-»XthenXandYareequivalent, written as X «— Y. In
this case, instead of building two or more relations, one for each such FD, we ci.a
‘build only a single relation for each such group of FDs. Such a strategy produces an
economic relational design.

Example 7.3

Let us return to the universal relation U{A, B, C, D, E, H} and the set of
FDs F = {A — BC, CD — E, E— C, D — AEH, ABH — BD, DH —
BC}. WesawthattheFDsCD-—»EandDH—»BCareredundamandwe
can climinate these. In addition, the FD ABF — BD is not left reduced, the
attribute B being extraneous. This gives us, after reduction, the FDs AH —
D. Now, since D — AH, we get the one-to-one dependency AH «— D.
Thus, AH and D are equivalent. We can combine these equivalent keys into
one relation to give the following synthesized relational design:

Ry{ABC} with key A
R;{EC) with key E
Ry{ADEH} Wwith keys AH, D

7.2 Normalization through Synthesis 345

724

Having determined tbs equivalent groups of FDs, we should eliminate any
transitive dependencies that may exist. This will ensure that the relations
produced will be in 3NF. &

Synthesis Algorithm

The best known synthesis algorithm was proposed by Bemstein (Bern 76) and is
sometimes called the Bernstein Synthesis algorithm. The algorithm starts with a uni-
versal relation and the functional dependencies to be enforced on it and produces a
third normal form database scheme that is lossless and dependency preserving. The
algorithm is called a synthesis algorithm because it constructs relation schemes from
the FDs rather than decomposing a relation scheme into simpler relation schemes.

The synthesis algorithm uses a canonical cover of a set of (left-reduced) func-
tional dependencies and groups the functional dependencies such that the determinant
of the FDs in each group is the same. Recall that an FD is left reduced if the left-
hand side does not contain any extraneous attributes. The algorithm then finds com-
pound functional dependencies (X;,X;, . . . , Xi) — Y by using the equivalent
determinant X; «— X;for 1 =i =< k and 1 = j =< k. The characteristic of the
compound functional dependency (X;, X3, . . . , X)) — Y is that X; — X and
Xi—»Yforl=si<kandl =j=k

Let us illustrate the synthesis algorithm via the following example.

Example 7.4 Consider the universal relation U(A, B, C, D, E, F, G) with the functional

dependencies:
BC —> A
FG — BC
B - D
C - E
F - A
G - A
ABE —» G
ACD — F

In step 1 we find that the canonical cover of F includes the above FDs.

In step 2 we find that the groups contain one FD each.

In step 3 we discover that BC — FG and FG — BC are in the
cover, hence we can combine these two groups into a single group (BC,
FG)— A. _

G now becomes (BC— A, B— D, . . . ACD - F).

J is BC — FG, FG — BC.

In step 4 we find that the minimum cover of G U J does not contain

BC — A.
(BCFG) with keys (BC,FG)
(BD) with key (B)

(CE) with key (C)

Chapter 7 Synthesis Approach and Higher Order Normal For_m

7.3

If we compare the relation schemes obtained with this approach with the ones
obtained in Example 6.32 using Algorithm 6.6 for the third normal form decompo-
sition, we find that the synthesis approach gives one less scheme. Basically we have
combined the FDs RTD — C and TPD — R into one relation scheme (RTDPC). This
particular relation scheme is not in BCNF since for the FD C — P in this relation,
the determinant C of the FD is not a key of the relation. However, the relation
(RTDPC) is in 3NF.

Multivalued Dependency

We discussed multivalued dependency (MVD) earlier with respect to the employee
entity and the dependents, positions, and salary history of the employee. Figure 7.1
is an unnormalized relation showing the relation EMPLOYEE {Employee_Name, De-
pendent(Name, Relationship), Position(Title, Date), Home_City, Home_Phone#}
and containing the information about employees. Each employee can have a number
of dependents and would have occupied various positions in the organization. The
relation has nonatomic values and hence, is not in normal form. We can normalize
this relation as shown in in Figure 7.2. We see in Figure 7.2 that {or a given value
for Employee_Name, there are multiple values for the attributes (Dependent_Name,
Dependent_Relationship) and (Position_Title, Position_Date). The set of values for
the attributes of (Dependent_Name, Dependent_Relationship) is not connected in any
way to the values of the attributes in {EMPLOYEE — Employee_Name — Depen-

R
Figure 7.1 Unnormalized EMPLOYEE relation.
Employee_ Dependent Positions Home. Home.
Name Name Relationship Title Date City Phone
Jill Jones Bill Jones spouse J. Engineer 05/12/84 Lynn, MA 794-2356
Engineer 10/06/86
Bob Jones , son J. Engineer 05/12/84
Engineer 10/06/86
Mark Ann Briggs spouse Programmer 09/15/83 Revere, MA 452-4729
Smith
Analyst 06/06/86
Chioe daughter Programmer 09/15/83
Smith-
_ Briggs Analyst 09/06/86
Mark son Programmer 09/15/83
mith

7.3 Multivalued Dependency S49
Figure 7.2 Normalized EMPLOYEE relation.
Employee_ Dependent__ Dependent_ Position_ Position_ Home_ Home_
Name Name Relationship Title Date City Phone#
Jill Jones Bill Jones spouse J. Engineer 05/12/84 Lynn, MA 794-2356
Jill Jones Bill Jones spouse Engineer 10/06/86 Lynn, MA 794-2356
Jill Jones Bob Jones son J. Engineer 05/12/84 Lynn, MA 794-2356
Jill Jones Bob Jones son Engineer 19/06/86 Lynn, MA 794-2356
Mark Smith Ann Briggs spouse Programmer 09/15/83 Revere, MA 452-4729
Mark Smith Ann Briggs spouse Analyst 06/06/86 Revere, MA 45204729
Mark Smith Chloe Smith-Briggs daughter Programmer 09/15/83 Revere, MA 452-4729
Mark Smith Chloe Smith-Briggs daughter Analyst 06/06/86 Revere, MA 452-4729//
Mark Smith Mark Briggs-Smith son Programmer 09/15/83 Revere, MA 452-47 A'.;: /
Mark Smith | Mark Briggs-Smith son Analyst 06/06/86 Revere, MA 452-4};’9"3
dent}. Similarly, the set of values for the attributes of (Position_Title, Position_Date
is not connected in any way to the values of the =ttributes in (EMPLOYEE — Employee
Name — Positions}.
For a second example of an MV, look at the SCHEDULE relation described
in Chapter 6 and shown, with some slight modifications in Figure 7.3. Notice that a
course is scheduled a number of times during the week, and on each such meeting
the room in which it meets may be different (not a frequent occurrence but nonethe-
less possible). Thus, the dependency between a course and a day is not simply func-
tional but multivalued. Similarly, the dependency between a course and the room in
which it meets is multivalued.
These multivalued dependencies can be indicated as follows:
Course ——> RoomDayTime
Figure 7.3 The SCHEDULE relation.
Prof Course Room Max_Enrollment Day Time
Smith 353 A532 40 mon 1145
Smith 353 AS534 40 wed 1245
Clark 355 H942 300 tue 115
Clark 355 H940 300 thu 115
Tumer 456 B278 45 mon 445
Turner 456 B279 45 wed 845
Jamieson 459 D111 45 tue '1015
Jamieson 459 D110 45 thu 1015

Clw 7 §ynthesis Approach and Higher Ordey Normal Form

However, a given course meets on a given day and time in but one room, i.e.,
there is a functional dependency:

CourseDayTime — Room

Multivalued dependencies arise when a relation R having a nonatomic attribute
is converted to a normalized form. For each X value in such a relation, there will be
a set of Y values associated with it. This association between the X and Y values
does not depend on the values of the other attributes in the relation. Suppose we have
two tuples t;, t; in relation R defined on relation scheme R with the same X value.
We exchange the Y values of these tuples and call the tuples so obtained t; and t,.
Then tuples t; and t, must also be in R.

In the SCHEDULE relation of Figure 7.3, there is a multivalued dependency
between Course &> RoomDayTime. Thus, if we exchange the {Room, Day, Time}
value in tuples t, and t, with the same Course value (353) where

t; = |Smith | 353 |A532 | 40 | mon | 1145 |
t, = |Smith | 353 |A534 | 40 | wed | 1245 |

we get tuples t; and t4 as follows:

t; = |Smith | 353 |A532 | 40 | mon | 1145 |
t = |Smith | 353 [A534 | 40 | wed | 1245 |

Tuples t; and t, are in the database. (In fact, in this example tuple t; is the
original tuple t; and tuple t, is the original tuple t,!)

The multivalued dependency Course ——> {Room, Day, Time} does not mean
that the multivalued dependencies Course ——> Room, Course —— Day, and Course
——> Time will hold. Thus, corresponding to tuples t, and t, above, if we exchange
just the Room values we get t;' and t," which are not in the database.

t' = |Smith | 353 |A534 | 40 | mon | 1145 |
t¢' = |Smith | 353 |[A532 | 40 | wed | 1245 |

Using Figure 7.2 we can verify that such an exchange of the Y values for a
multivalued dependency X —— Y in two tuples t; and t, with the same X value will
always give tuples t; and t, which are in the database, even if the relation has mul-
tiple multivalued dependencies. However, tuples t; and t, need not be the original
tuples t, ‘and t,. Exchanging the values of the attributes {Dependent_Name,
Dependent_Relationship} in any two tuples t; and t, of Figure 7.2, gives us tuples t;
and t, as shown below. Tuples t; and t, are in the database, but these tuples are not
the original t, and t, tuples.

t, = |7 J|Bill J|spouse|J. Eng|05/12/84|Lynn, MA|794-2356|
t, =) J|Bob Jjson |Eng |10/06/86[Lynn, MA|794-2356|

ts = |J J|Bill J |spouse|Eng |10/06/86[Lynn, MA|794-2356|
t. = |J J|Bob Jjson [J. Eng|05/12/84|Lynn, MA|795-2356|

